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Onset of wave fronts in a discrete bistable medium
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The transition from a standing front to a traveling front is studied in an array of symmetric bistable coupled
oscillators. The mechanism leading to propagation may be understood in the context of agluing bifurcation
involving a pair of homoclinic loops. The velocity of the front shows a logarithmic dependence with the
coupling strength according to this mechanism.
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Pattern formation has become one of the most active a
of research@1#. The development of patterns can be attr
uted to the combination of diffusion and local nonlinear d
namics. Interfacial paterns can be distinguished due to
fronts that separate domains of different uniform or quasiu
form states.

One of the main categories in the reaction-diffusion s
tems corresponds to those whose local dynamics posse
two stable states: two fixed points, one fixed point and
cycle, etc. Here we focus on the case where two stable st
states coexist. Bistability is a simple phenomenon that
pears in a great variety of contexts. Particularly import
examples are found in optics@2#, chemical systems@3#, and
biology @4–6#.

Front propagation is an important mechanism for patt
formation in continuous and discrete systems. Phenom
such as crystallographic pinning and lattice anisotropy oc
naturally in spatially discrete material models. In biolog
examples of applications of spatially discrete models inclu
the bidomain model for cardiac tissue~defibrillation!, tissue
filtration, gas exchange in lungs, and calcium waves. So
most attention has been devoted to bistable nonsymm
systems where the domain corresponding to the most st
state advances through the less stable one. Discrete bis
systems have been studied in this context, so propaga
succeeds above a critical coupling (D.Dth). In particular,
the propagation failure phenomenon@7–10# has been widely
considered. However, one important fact is that symme
does not preclude front propagation in nongradient syste
For example, Hagberg and Meron@11# have shown for the
continuous FitzHugh-Nagumo model that wave propaga
may be initiated through a symmetry breaking mechanism
pitchfork bifurcation.

In this Rapid Communication, we show a transitio
standing→oscil lating→traveling front in an array of
symmetric multivariablebistable units. This transition seem
to be exclusive for a discrete medium.

As starting point, we consider a one-dimensional ar
consisting of bidirectionally coupled identical units,

ṙ j5 f ~r j !1
D

2
G~r j 111r j 2122r j !, ~1!

where r jPRn. D is the coupling parameter andG is the
coupling matrix. Although the casen51 has been widely
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studied @5,10,12,13#, multivariable cells (n.1) may show
interesting phenomena, like the scenario leading to fr
propagation described below.

In our case, we deal with the well-known Lorenz oscill
tor @14# as a unit cell. In order to be the most general
possible, two kinds of coupling have been considered h
such as~i! the off-diagonal case (G5gkl5dk1d l2) and ~ii !
the on-diagonal case (G5gkl5dk2d l2),

ẋ j5s~yj2xj !1
Da

2
~yj 111yj 2122yj !,

ẏ j5rx j2xjzj2yj1
Db

2
~yj 111yj 2122yj !,

żj5xjyj2bzj , j 51, . . . ,N. ~2!

Parameterss and b are chosen to be the standard oness
510 andb58/3. Depending on the kind of coupling, tw
different values of the parameterr @15# were selected:~i! r
58 and~ii ! r 514. For both cases, the Lorenz oscillator do
not exhibit a chaotic attractor@16#, but simply asymmetric
bistable phase space with two stable spiral pointsC65
(6Ab(r 21),6Ab(r 21),r 21) and a saddle point locate
at the origin.

In Eq. ~2!, Da and Db account for the coupling coeffi
cients between cells for the two cases studied here; the
and on-diagonal coupling, respectively. From now on, sin
most of the results are independent of the kind of coupli
we will use D both for the off- (Da5D,Db50) and on-
diagonal (Da50,Db5D) cases. The dynamical syste
above was numerically integrated using a fourth ord
Runge-Kutta method. Free ends were considered for thy
variable. As initial condition, half of the oscillators were co
sidered to be in the steady stateC1 , while the rest of cells
were located atC2 .

Depending on the coupling strengthD, different
asymptotic states were obtained, Fig. 1. The transition to
propagating solution is as follows; as the coefficientD is
increased the boundary between domains of both solut
(C1 andC2) becomes smoother than the steplike bound
observed forD50. That is, some oscillators move to th
vicinity of C1 andC2 . For a given value ofD the boundary
starts to oscillate, i.e., the front undergoes a Hopf bifurcati
but it does not propagate. Finally, for values ofD greater
than some thresholdDth propagation occurs. Both senses a
equally probable because of the symmetry of the syst
although in Fig. 1 we show the transition fromC1 to C2 .
©2001 The American Physical Society03-1
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FIG. 1. Spatiotemporal evolu
tion of the wave front as the cou
pling strength D is increased.
A steplike initial condition
is imposed for an open
array of N550 oscillators: r i

'C1 , i 51, . . .,25; r j'C2 ,
j 526, . . .,50. Depending on the
value of D, three different states
are achieved. ForD<7.5 (D54
andD57.5 are shown at the pan
els above! the system evolves to a
standing front, forD58.8,Dth

the front oscillates but still does
not propagate, while forD58.9
.Dth the front propagates
through the array shifting the os
cillators from C1 to C2 . The
time interval shown is 20 time
units and the kind of coupling
used in this figure was the off
diagonal one.
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For a finite open array~null-flow boundary condition!, the
whole system collapses finally to one of the two stable so
tions. On the other hand, for the case of a ring~periodic
boundary condition!, stationary wave-front solutions can b
found. Note as well that for values ofD greater than the
threshold valueDth , the front oscillates with some fre
quency, which increases with the coupling strength.

Each regime~oscillating or propagating! is characterized
by an intrinsic quantity. We measured the period of osci
tion (T1) for the oscillating regime, and the speed of t
front ~c! for the propagating one. Some special features
both sides of the critical pointDth were obtained. First of all
the period of oscillation of the front (T1) diverges as one
approaches toDth from below, while for D.Dth we ob-
tained a non-standard dependence of the front velocityc with
D. The velocity grows from zero abruptly atD5Dth , but it
does not follow the typical square root law dependence w
D @17#. The divergence ofT1 andc21 is of logarithmic type
in the neighborhood ofDth , as it is shown in the left-mos
graphs of Fig. 2. Two semilog plots ofT1/2 andc21 as a
function of uD2Dthu are shown in the right-hand side of Fig
2 for both kinds of coupling used in this Rapid Communic
tion. The meaning of the slope for both curves (2lu

21) is
explained below. It is remarkable thatT1/2 andc21 behave
quite similarly underuD2Dthu for a large interval of values
and for both, off- and on-diagonal couplings. On the oth
hand, for larger values ofr ~e.g., r;20), the transition be-
comes more convoluted for both types of coupling stud
here. The front displaysspontaneousreversals just above
Dth , which makes it difficult to measure the front veloci
with high precision. Nonetheless, far enough from the tr
sition ~in absence of front reversals!, one observes thatT1/2
and 1/c decay with ln(uD2Dthu) and both curves follow simi-
lar functions within a 20% of tolerance.
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To better describe the transition to front propagation on
the Hopf bifurcation occurs, instead of considering the ar
as a dynamical system with many degrees of freedom,
worthwhile to describe the transition to propagation in a
duced phase space with coordinates,

j5
1

A2
(
j 51

N

xj1yj mod„2A2b~r 21!…, ~3!

h5
1

A2
(
j 51

N

2xj1yj , ~4!

with the coordinatej defined cyclic. The movement of th
front shifts a cell fromC6 to C7 so the system returns to
state dynamically equivalent. In our case, as the fr
moves to a new cell, the value ofj increases or
decreases an amountDj51/A2(2Ab(r 21)12Ab(r 21))
52A2b(r 21), which is the range wherej must be defined.

Figure 3 shows the evolution of the front in the cylindric
phase space determined byj andh. For D larger than some
critical value, the system undergoes a supercritical Hopf
furcation, so the front starts to oscillate around the ste
statej5h50. The cycle grows asD is increased and for a
critical point Dth the orbit transforms into two homoclinic
loops. The situation is quite similar to a pendulum with t
critical energy for its dynamics to go along one of the tw
separatrices that isolate libration from rotation. In our ca
libration corresponds to the oscillation of the front, whi
rotation corresponds to front propagation. We can charac
ize our phase space, near the threshold, with the equiva
phase space@18# illustrated schematically in Fig. 4. The b
furcation consists in a gluing~resp. splitting! of two ~resp.
3-2
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FIG. 2. 1/c ~solid line! and
T1/2 ~squares! as a function ofD
2Dth ~a!, ~c! and ln(uD2Dthu) ~b!,
~d! for the off-diagonal ~a!, ~b!
and on-diagonal~c!, ~d! couplings.
The behavior is quite similar, nea
the onset of the traveling waves
as expected from Eqs.~6! and~7!.
Both semilog plots may be fitted
to a straight line with slope
2lu

21 (lu is the eigenvalue asso
ciated to the unstable eigenvecto
of the saddle point! as expected
from Eqs.~6! and~7!. For the off-
diagonal coupling~a!, ~b! r 58,
Dth'8.841 526 andlu

21'0.637,
while for the on-diagonal coupling
~c!, ~d! r 514, Dth'39.628 38
andlu

21'3.36.
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one! cycles. Analogousgluing bifurcationsappear in systems
with Z2 symmetry@19,20#, as it happens in our system. No
that Eq.~2! is invariant under the transformation

~x1 ,y1 ,z1 , . . . ,xN ,yN ,zN!→~2x1 ,2y1 ,z1 , . . . ,2xN ,

2yN ,zN! ~5!

FIG. 3. Evolution of the reduced phase space (j,h) as the cou-
pling strengthD increases for the off-diagonal case. AsD increases,
oscillations enlarge their amplitude. Finally, forD5Dth

'8.841 526 the orbit collides with itself~in a cylindrical phase
space!, resulting in two homoclinic connections. Some spurious
tersections arise forD'Dth because of the projection onto a two
dimensional space.
06520
for both couplings.
In 1990, Gaspard@21# obtained the period lengthening o

a limit cycle that collides with a hyperbolic fixed point re
sulting in a homoclinic connection. This scenario is char
terized by the logarithmic divergence of the period of t
orbit as the threshold value is approached as it was show
Fig. 2. Then, it is straightforward to extend the analysis
our case~see Fig. 4! where adoublehomoclinic connection
appears. The period of the oscillations (T1) of the front be-
haves when approachingDth in the following manner,

T15a12
2

lu
ln~Dth2D !, ~6!

-

FIG. 4. Schematic of the bifurcation sequence for the doub
homoclinic connection in a plane phase portrait. This transition
been previously namedgluing bifurcation @20#. For D,Dth the
trajectory approaches twice per cycle to the saddle point and
front oscillates. BeyondDth , the double homoclinic loop splits into
two cycles, corresponding to both senses of propagation of
front.
3-3



th
y

io

th

e
e

o
f

er
d
v
f

s

-

ur-
re-
ul-

bal

he
er

ario

of
of the
d

ich

bi-

nu-

ant
l-

RAPID COMMUNICATIONS
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where lu is the unstable eigenvalue of the saddle and
factor 2 appears because the orbit crosses twice per c
close to the saddle point.

On the other hand, for the propagating region the per
of oscillation ~in the periodic phase space! is the inverse of
the velocity~c! of the front. Then,

1

c
5T25a22

1

lu
ln~D2Dth!. ~7!

Therefore, close to the threshold both magnitudesT1/2
and 1/c should exhibit the same dependence with ln(uD
2Dthu). Moreover, it must be noted that close to the onset
fast dynamics~i.e., far from the saddle point! will be quite
similar in the propagating region and in the oscillating on
Thus, it is expected thata1'2a2. This last reasoning and th
logarithmic dependence onuD2Dthu predicted by Eqs.~6!
and~7! are successfully confirmed by Fig. 2 for both types
coupling studied in this paper. Even for larger values or
where some discrepancies were found betweenT1/2 and 1/c
as a function of the logarithmic coupling strength, the diff
ences were smaller enough to consider that the main un
lying mechanism continues to be the one explained abo
although in a more complex way. Thus, for high values or
the homoclinic connection is of saddle-focus type~the stable
eigenvalues are complex conjugates,ls5r6 iv). This
would not be important regarding the phenomena discus
in this paper unless the Shil’nikov condition is fulfilled (lu
s.

.
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.2r.0) @22#. In this case~see Ref.@19#!, a more complex
scenario develops~including homoclinic chaos that origi
nates spontaneous reversals of the front! @23#.

Which are all the necessary ingredients to find the bif
cation route explained here is still a matter a of future
search. Nonetheless, some conditions must be fulfilled: m
tivariable nongradient units and a coupling preserving glo
Z2 symmetry.

Finally, it must be noted that previous studies@7,9# that
take the value of the coupling strength up to which all t
stationary solutions of the array continue to exist, as a low
bound for wave propagation, are not suitable for the scen
explained here.

In conclusion, a route to front propagation in arrays
bistable systems has been presented. The dependence
velocity of the front with the coupling strength is explaine
by the occurrence of a double homoclinic connection wh
is found for different couplings@24#. The logarithmic vanish-
ing of the front velocity withD is different of the standard
root square dependence, found in multitude of systems.

Some phenomena, for example the short wavelength
furcation @25#, do not have the trivial continuum limit. This
is the case of our transition that must be considered a ge
ine effect of discreteness.
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